
—^—— ...-.,..-- .: ■• :... ■•■!" ". ■
._.,....... . . ., _ ..„..., ..^

AFRL-IF-RS-TR-2000-4
Final Technical Report
January 2000

FORMAL ALTERNATIVES MANAGEMENT
INTEGRATING LOGICAL INFERENCE AND
RATIONALE (FAMILIAR)

Knowledge Evolution, Inc.

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. D899

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

0pßqpAUwn«ÄSBD4 v_

This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

AFRL-IF-RS-TR-2000-4 has been reviewed and is approved for publication.

APPROVED:

DEBORAH A. CERINO
Project Engineer

FOR THE DIRECTOR

NORTHRUP FOWLER
Technical Advisor
Information Technology Division

If your address has changed or if you wish to be removed from the Air Force Research
Laboratory Rome Research Site mailing list, or if the addressee is no longer employed by
your organization, please notify AFRL/IFTD, 525 Brooks Road, Rome, NY 13441-4505.
This will assist us in mamtaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.

FORMAL ALTERNATIVES MANAGEMENT INTEGRATING LOGICAL
INFERENCE AND RATIONALE (FAMILIAR)

Sidney C. Bailin and Dean T. Allemang

Contractor: Knowledge Evolution, Inc.
Contract Number: F30602-96-C-0284
Effective Date of Contract: 27 August 1996
Contract Expiration Date: 30 August 1999
Short Title of Work: Formal Alternatives Management

Integrating Logical Inference and
Rationale (Familiar)

Period of Work Covered: Aug 96 - Aug 99

Principal Investigator: Sidney C. Bailin
Phone: (202) 467-9588

AFRL Project Engineer: Deborah A. Cerino
Phone: (315)330-1445

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

This research was supported by the Defense Advanced Research
Projects Agency of the Department of Defense and was monitored
by Deborah A. Cerino, AFRL/IFTD, 525 Brooks Road, Rome, NY.

REPORT DOCUMENTATION PAGE
Form Approved

OMBNo. 0704-0188

Pubacrap«^ burden for this collection of M^^^^
IN cotation of information. Send amb regarding this burton estimate or any otto aspect of ths colection of information, irdoiij WW<™l°'^^.^*™^m%*£^M™M una°mt "" mNm

Operations and Report., 1215 Jefferson Davis Highway Slate 1204, Arlington. VA 22202-4302. and to the Office of Management and Budget. Paperwork Reduction Pro|ect 1070441«». Washington. DC 20603.

1. AGENCY USE ONLY (Lean blank) 2. REPORT DATE

JANUARY 2000

3. REPORT TYPE AND DATES COVERED

Final Aug 96 - Dec 99
4. TITLE AND SUBTITLE
FORMAL ALTERNATIVES MANAGEMENT INTEGRATING LOGICAL
INFERENCE AND RATIONALE (FAMILIAR)

6. AUTHOR(S)

Sidney C. Bailin and Dean T. Allemang

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESSIES]

Prime: Sub:
Knowledge Evolution, Inc. Synquiry Technologies, Ltd.
1050 17th Street, NW, Suite 520 1 Williston Road Suite 4
Washington DC 20036 Belmont MA 02178

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESSIES)

Defense Advanced Research Projects Agency Air Force Research Laboratory/IFTD
3701 North Fairfax Drive 525 Brooks Road
Arlington Virginia 22203-1714 Rome NY 13441-4505

5. FUNDING NUMBERS

C - F30602-96-C-0284
PE- 62301E
PR- D899
TA- 01
WU-01

. PERFORMING ORGANIZATION
REPORT NUMBER

N/A

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

AFRL-EF-RS-TR-200O4

11. SUPPLEMENTARY NOTES
Air Force Research Laboratory Project Engineer: Deborah A. Cerino/IFTD/(315) 330-1445

12a. DISTRIBUTION AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)
The FAMILIAR project goals were to: 1) position software design rationale capture in the context of alternatives
management, i.e., systematic exploration of design alternatives and their trade-offs against the goals of Hie system under
development; and 2) formalize the capture and presentation of design rationale through Functional Representation. The
FAMILIAR technology is a union of alternatives management and Functional Representation. It is based on earlier
technologies. KAPTUR and ZD 1, which explored these respective approaches. FAMILIAR built on lessons learned from
those systems and provided a more robust tool that supports a range of rationale capture situations from completely informal
to fully formal. FAMILIAR also supports the evolution towards increasing formalism as a domain matures.

14. SUBJECT TERMS
Rationale Capture, Design Record, Decision Support, Formal Specification, Automated
Analysis, Domain Modeling

15. NUMBER OF PAGES

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

16. PRICE CODE

20. LIMITATION OF
ABSTRACT

TJL
Standard Form 298 (Rev. 2-89) (EG)
PretoibatlbyANastl239.1« „
Oeagned uaog Perform Pre, WHSID10R. Ort M

Executive Summary

This document summarizes the work performed under the FAMILIAR project within
DARPA's Evolutionary Design of Complex Software (EDCS) program. FAMILIAR was
part of the Rationale Capture (RC) thrust of EDCS. Rationale capture is a way of
mitigating risk in critical design decisions. Risk in such situations derives from the multi-
layered, multi-dimensional nature of the systems being designed, and from uncertainty
about changing conditions in which the systems will be deployed. RC encourages the
rigorous evaluation of alternatives before committing to a design choice. It enables
designers to revisit and re-evaluate decisions in the event of changed circumstances or
new information.

FAMILIAR is a decision support tool that encourages systematic exploration of design
alternatives and their tradeoffs. FAMILIAR applies this idea to the evolution of a target
system. Successive versions of the target system represent "snapshots" of an ongoing
decision process, which can be compared and contrasted through the rationales behind
the decisions.

FAMILIAR represents design knowledge in terms of goals, alternatives, features, and
components. Goals are the objectives of the current design task. Alternatives are different
ways of achieving the goals. Alternatives are arranged in a tree where each branch
consists of successively more detail about potential solutions. Features are the
dimensions along which the alternatives differ. Features provide a way to compare and
contrast specific aspects of alternative designs and to perform "what if analyses by
changing some aspects while keeping others constant. Each alternative may be composed
of several components (e.g., subsystems or low-level components). FAMILIAR
maintains the linkage between choices at the component level and their impact on higher-
level system goals.

FAMILIAR uses a technique called Functional Representation (FR) to formalize the
expression of design rationale. This allows FAMILIAR to analyze design decisions and
provide feedback to the designer. The role of FR in FAMILIAR is to enable reasoning
about functional rationale, i.e., understanding the role that a particular function plays in
realizing the goals of the target system. FR allows a designer to discover what happens if
one or more of the goals change, or if one function is replaced by another, or if a function
is removed or added. Unlike most formal methods, FR allows the formalization of
selected aspects of a complex system without requiring a complete formal representation.
This makes it much more feasible for real-world use.

We have implemented several mechanisms for capturing design rationale non-intrusively,
e.g., from e-mail messages, placing the information in the FAMILIAR database, and
incrementally formalizing it as designers' understanding of the target system evolves.
Together, these capabilities provide a way of managing uncertainty, mitigating risk, and
building on best practice in system development.

Table of Contents

EXECUTIVE SUMMARY I

TABLE OF CONTENTS 11

1 INTRODUCTION 1

2. OBJECTIVES 2

3. ACCOMPLISHMENTS 3

3.1 FORMAL ALTERNATIVES MANAGER (FAM) 4
3.2 ENHANCEMENTS TO THE ZD FUNCTIONAL REPRESENTATION SYSTEM 5
3.3 INTEGRATED RATIONALE CAPTURE AND REPRESENTATION 7
3.4 ACCOMPLISHMENTS vs. OBJECTIVES 8
3.5 ACCOMPLISHMENTS VS. EVALUATION CRITERIA 9

4. APPROACH 9

4.1 YEAR ONE: CON-OPS AND INITIAL PROTOTYPE 10
4.2 YEAR Two: DESIGN RATIONALIZATION AND USABILITY ENHANCEMENTS 11
4.3 YEAR THREE: IMPROVED CON-OPS AND CLIENT-SERVER ARCHITECTURE 13

5. LESSONS LEARNED 14

5.1 NON-INTRUSIVE RATIONALE CAPTURE 14
5.2 INTEGRATED DISPLAY 15
5.3 PRO-ACTIVE GUIDANCE TO THE USER 16

5.3.1 Pros and Cons of a Process-Based Interface : 17
5.4 NEED FOR DBMS FUNCTIONALITY 17
5.5 FAMILIAR AS CORPORATE MEMORY 18
5.6 FAM AS AN INTELLIGENT PORTAL 19
5.7 DESIGN TRACE vs. DOMAIN MODEL 19
5.8 RELATIONSHIP WITH WINWIN 20
5.9 NEED FOR RULES 21
5.10 FEATURE COMBINATIONS 21
5.11 TRADEOFF CALCULATIONS 22
5.12 NEED FOR A LIGHTWEIGHT USER INTERFACE 23
5.13 JAVA FRAGILITY 23
5.14 IMPACT OF USING A THEOREM PROVER IN ZD 24
5.15 INTEROPERABILITY OF FORMAL LANGUAGES 25

6. FUTURE DIRECTIONS 25

LIST OF ACRONYMS 28

li

1 INTRODUCTION

This document summarizes the work performed under a project entitled Formal
Alternatives Management Integrating Logical Inference and Rationales (FAMILIAR).
FAMILIAR was part of the Evolutionary Design of Complex Systems (EDCS) program,
sponsored by the Defense Advanced Research Projects Agency (DARPA) and the Air
Force Research Laboratory (AFRL).

FAMILIAR was part of the Rationale Capture (RC) thrust of EDCS. The observation
motivating RC was that the evolution of complex systems involves a web of inter-related
design decisions with many dimensions of choice. There is often significant uncertainty
about the potential impact of the decisions and the changing conditions in which they will
be deployed. In order to minimize the risk in such a process and to optimize the decisions
made, it is necessary to articulate the rationales for decisions so that they can be
rigorously evaluated and, if necessary, revisited in the future.

FAMILIAR sought to situate RC in the context of alternatives management, that is, the
systematic exploration of alternative design decisions and their tradeoffs against the goals
of the system under development (the target system). In this respect, FAMILIAR
represents a marriage of RC with certain ideas from the discipline of domain modeling.
In domain modeling, alternative ways of designing a particular type of system are
described. It is understood that in certain contexts, certain design approaches will be
more appropriate than others. The domain model, together with its associated database of
reusable components (or assets), defines the space of available solutions and indicates the
conditions under which either one or another solution is to be preferred.

FAMILIAR adapts this idea to the evolution of a single system (or, perhaps, different
versions of a single system). This adaptation amounts to broadening the definition of
domain so that it can refer to the space of possible designs for a single system, or for
multiple versions of a system, or for similar but distinct systems. By broadening the
notion of domain in this way, FAMILIAR establishes itself as both a design tool and a
domain modeling tool, with emphasis in both respects on alternatives management and
rationale capture.

The other primary innovation of FAMILIAR was to formalize the capture and
presentation of design rationale. Formalization is achieved through functional
representation (FR), which is a method of expressing the teleology of various parts, or
facets, of a system. FR has several advantages over other formal approaches to system
specification and design. In FAMILIAR, there are two principal benefits of FR:

1. It allows formalization of selected aspects of a complex system without requiring
a complete formal representation.

2. It decouples teleology from structure. A designer can reason about a particular
functional aspect of the target system whether or not it corresponds to a defined
software or hardware component.

The role of FR in FAMILIAR is to enable reasoning about functional rationale, i.e.,
understanding the role that a particular function plays in realizing the goals of the target
system. FR allows a designer to discover what happens if one or more of the goals
change, or if one function is replaced by another, or if a function is removed or added.

FAMILIAR, as its name implies, is a union of alternatives management and functional
representation. The project took as its starting point an existing tool in each of these two
areas. For alternatives management, the starting point for FAMILIAR was the KAPTUR
(pronounced "capture") tool, which originated as a domain modeling tool that
emphasized rationale capture for decision support. For functional representation, the
springboard was the ZD (pronounced "zeddy") tool, which applies FR to software design.
These two tools were the legacy that the two Pis brought with them to FAMILIAR: Dr.
Bailin was the originator of KAPTUR, and Dr. Allemang's research was the basis for the
ZD tool. Lessons were learned through the earlier development of both tools. It was the
intention of the Pis to apply these lessons to an integrated FAMILIAR tool that would
improve upon both of its precedents, at the same time enhancing each through their
complementary capabilities.

2. OBJECTIVES

In the FAMILIAR proposal, the following benefits were identified as goals of the project:

• Non-intrusive and cost-effective design rationale capture

Despite the recognized importance of design rationale, and the prevalence of
reasoning about alternatives in the software design process, it is the exception rather
than the rule when rationales are recorded for later consumption. The main reason for
this is the effort that must be expended to record design rationale, and the perceived
interference of this effort with the design process itself.
One of the goals for FAMILIAR was to minimize the effort involved in capturing
design rationale, and to weave rationale capture as seamlessly as possible into the
design process.

• Enhanced automated support for software/system understanding

We envisioned a tool that could automatically infer and provide explanations of
certain software design properties through FR.

• Enhanced ability to anticipate the impact of intended changes to a system
Accurately predicting the effects of changes has proven to be one of the most difficult
aspects of evolving a complex system. Through automated reasoning using FR,
FAMILIAR was intended to identify potential problems with a proposed change. For

example, by tracing the fulfillment of provisos (conditions that must be met for
declared functional goals to be achieved), FR could identify gaps in a design. The
range of changes susceptible to such analysis would depend on the extent to which a
system has been modeled using FR.

Support for increasing formalization as a domain matures
In KAPTUR-style alternatives management, design alternatives are characterized by
features selected from a domain ontology. By combining this with the more formal
FR approach, which can be applied to all or part of a system design, we intended to
support a spectrum of rationale representations, ranging from completely informal to
completely formal. As a domain matures, FAMILIAR would support increasing
levels of formalization by supporting increasingly rich semantics for the features,
culminating in a functional representation where appropriate.

» Traceability of evolving design decisions
FAMILIAR was intended to support a trail of "snapshots" of points visited in the
space of design alternatives as a system evolves. By borrowing the idea of & family of
systems from domain modeling, we would be able to represent these multiple
snapshots in a way that facilitated comparison and understanding the differences.
This amounts to understanding the evolution of the target system.

» Decision support through disciplined evaluation of design alternatives
Ultimately, the motivation for rationale capture is to improve the quality of design
decisions. During initial design, articulating rationales can help clarify the desirability
of decisions. During system evolution, previously recorded rationales provide a basis
for assessing proposed changes. Rationales, however, are only as useful as the ^
underlying reasoning is rigorous. A rationale that is not based on sound evaluation of
alternatives is of minimal use, except perhaps as a negative example. One of the goals
of FAMILIAR was to emphasize the use of recorded rationale for decision support,
and this entails supporting the systematic evaluation of design alternatives.

• Increased integration and feedback between lifecycle phases
Because FR can be used at various levels of abstraction, it can serve as a link between
abstract functional design and the more concrete activity of configuring components.
We expected this to facilitate backtracking to the earlier design phases when
necessary, enabling designers to move back and forth between abstract specification
and concrete configuration more fluidly.

3. ACCOMPLISHMENTS

Our main accomplishment is the development of an integrated rationale capture system
combining alternatives management with formal reasoning. The Formal Alternatives
Manager (FAM) acts as an intelligent portal to the knowledge needed for decision

support during software (or other) design processes. The enhanced ZD tool supports the
evaluation of designs and helps refine proposed solutions.

We demonstrated the integrated system's use to support a tradeoff- and rationale-based
design process for both software and logistics plans. The demonstrations included
automated reasoning to detect and recommend fixes for missing functions.

The following sub-sections provide more detail about technical accomplishments within
the alternatives manager and the FR system, as well as about their integration with each
other and with other EDCS technologies.

3.1 Formal Alternatives Manager (FAM)

FAM represents a re-thinking of the ideas that went into the earlier KAPTUR tool. The
advances concern usability as well as richer semantics for the data structures involved in
alternatives management.

FAM models evolving design knowledge as a collection of interrelated hierarchies: goals,
alternatives, features, and components. Goals represent the objectives of the design task
currently being performed. Each goal has a numerical importance assigned to it relative
to other goals. This information allows FAM to provide decision support to the user in
choosing among alternatives. The alternatives hierarchy is a categorization of designs.
Moving down the hierarchy leads to more specialized knowledge. Features are the
dimensions along which alternatives differ from each other. Because any complete design
is a combination of many aspects, the feature hierarchy provides a way to compare and
contrast specific aspects of alternative designs and to perform "what if analyses by
changing some aspects while keeping others constant.

Each alternative design may be composed of several connected components (e.g.,
subsystems or low-level components). Each component comes from its own domain,
where it is probably just one out of several alternatives in that domain. The component's
distinguishing features have an impact on the features of the containing design. FAM
maintains these interconnections, propagating changes so that the hierarchies remain
mutually consistent, providing the user with a simple means of viewing the knowledge
interconnections relevant to a given design task.

While FAM provides a front-end for organizing a team's knowledge, the knowledge itself
— specific goals, designs, or feature documentation — is maintained on the Web external
to FAM and accessed through an easy point-and-click interface. Because this information
may be output from or input to a diverse set of tools, or may be stored in diverse
databases, FAM provides a number of methods for automated, non-intrusive rationale
capture.

One automated capture mechanism is the ability to import text files containing FAM-
decipherable information. We view this as a general purpose mechanism for loosely

interfacing with discipline-specific design evaluation tools (e.g., cost models,
performance analyzers, etc.). In addition, text import can be used a fast way to create a
large database, where item-by-item input into the tool would be too time
consuming. FAM also has a published Java-API, so tighter tool integration can be
achieved, if desired.

An e-mail capture capability provides a way to annotate FAM items (design alternatives,
features, goals, tradeoffs) with commentary that occurs naturally in the e-mail dialogues
between team members. E-mail that is cc'd to a FAM e-mail server is automatically
stored and indexed at a designated URL. When the sender next brings up FAM, she is
prompted (optionally) to assign portions of the message to one or more FAM items, using
a simple highlight-and-click interface.

We also implemented a rule engine that can be used to extend the semantics of
alternatives, features, goals, components, and tradeoffs, either generically or for a specific
project or domain. The rule engine is an adaptation of the Hendrix tool, which was
developed under AFRL's Knowledge-Based Software Assistant Project.

3.2 Enhancements to the ZD Functional Representation System

In tailoring the ZD tool to support functional rationale capture and inter-operate with
FAM, we implemented the following specific enhancements to existing capabilities:

• Integration of functional representation with an automatic theorem prover
The theorem prover that was chosen for this was the NQTHM of Boyer and Moore,

• Compatibility Constraint Satisfaction Problem (CCSP) algorithm
This was one of the main configuration capabilities of ZD1. We implemented it in the
formalism of the theorem prover.

• Proviso Proving and Propagation (PPP) algorithm
The algorithm is derived from Allemang's dissertation. We implemented it using the
formalism of the theorem prover.

Further accomplishments reflected new capabilities for ZD. Some of these were inspired
by other EDCS work:

• Extension of the Rapide analysis of the X-Open 2-phase commit database reference
architecture

ZD represents a system in terms of states, changes from one state to another, and the
agents that effect these changes. Because ZD allows this information to be
represented formally, it is possible to reason about the circumstances in which an
agent will bring about a desired state.

At one point in the 2-phase commit strategy, the agent that will effect the state change
is chosen. The choice is mediated by certain constraints on when agents may act. This
raises the question: Is the set of agents given in the reference architecture, acting
under these constraints, sufficient to ensure that the state change will occur as planned
under all circumstances?

ZD was extended with a capability to prove when this is the case. Specifically, ZD
proves that the rollback and commit actions, when used according to the 2-phase
commit strategy, guarantee the continued consistency of the distributed database.

We also extended the example to accommodate some credible changes in the
assumptions made by the X-Open reference architecture. For example, instead of
assuming that each database will return either "yes" or "no" when queried "will you
commit if asked?" we broadened the assumption to include a third possible result of
time out without reply. ZD was able to prove that the original reference architecture
would fail to ensure consistency in this case, while a slight modification of the
architecture can be proven to ensure consistency. These results complement those
obtained by Rapide for the same example.

• Extension of ZD to accommodate knowledge sources

At Georgia Tech, the development of SIRRINE (and before that, Autognostic)
concentrated on the nature of knowledge sources in software systems. The ZD
architecture was extended to reflect this capability by the addition of domains, which
are shared sources of formal information. Domains can be used to reason about the
correctness of connections spanning disparate parts of the analyzed system's
architecture.

• A simple form of a survivability determination

This demonstration uses a functional representation to determine possible alternative
plans. The formal representation, along with other functional representation
capabilities (PPP and CCSP), allow the system to provide detailed information about
the feasibility of each alternative.

Survivability analysis is a natural application of a functional representation like ZD,
since ZD represents not only what services are supplied by a component, but also
what services were required by that component in its context. This means that when a
component fails, the suitability of another component, which provides a different
service, can nevertheless be evaluated. At the EDCS demonstration in 1999, we
demonstrated a simple form of survivability analysis based on this principle. Because
of the formal system in ZD (supported by a theorem prover), and the name-space
bookkeeping done by ZD, it was possible to develop this capability in about a half-
day.

Other accomplishments include documentation of the use of ZD, including several
examples involving Y2K issues. Details of the ZD system that implements these

capabilities can be found in the ZD tutorial, available at the functional representation for
software web page (www.synquiry.com).

3.3 Integrated Rationale Capture and Representation

Much of the effort expended in the FAMILIAR project was committed to integrating the
system. One of the major goals of the project was to combine the alternatives
management capabilities of FAM with the functional representation capabilities of ZD.
Our strategy for this integration was to make use of as much EDCS technology as
possible. In particular, we demonstrated the following:

• Integration of FAMILIAR with ACME

In its first year, FAMILIAR was in two parts, an alternatives management system and
a functional representation system. A particular challenge faced in the project was
how to share information about the decomposition of a system between these two
components. Since the information that was to be shared concerned the architecture
of the system, we decided to use the ACME architecture interchange language to
mediate the connection.

We provided a capability for FAM to express and export decompositions of
alternative designs in ACME. ZD was given the capability to import these as ^
functional representations. Since ZD can make use of more information than simple
decomposition, we integrated the system with the ACMEStudio tool. This allows a
user to augment the decomposition description in ACME.

Finally, we provided a means for ZD to report its findings as annotations in ACME.
This again can be displayed by ACMEStudio. An example of the capability was
demonstrated at the second EDCS Demo Days. The example now appears on the
functional representation for software web page (www.synquiry.com).

• Distributing the application

The various parts of the integrated application described above have different
requirements for the platforms on which they run. The most restrictive of these is
ACMEStudio, which runs only on Windows (tm) platforms. A major challenge in
engineering the system was to get all the pieces, running in different languages, to
inter-operate. We took advantage of another EDCS technology, Franz Orblink, to
mediate the inter-operation. ZD, which is written in Lisp, communicated with ACME
through Orblink. ACME, which was available in Java, communicated with FAM
(also in Java) natively.

• Using ACME with an Orb

In order to achieve the integration described above, it was necessary to be able to
speak to ACME through a CORB A-standard Orb. Since ACME, as distributed by
CMU, is not CORBA-enabled, we produced a CORBA-enabled version of ACME,

which is available from the EDCS software repository that was set up at the
University of Colorado for the second EDCS Demo Days.

Translating ACME to ZD

Even with the orb in place, it was necessary to translate from ACME into ZD. This
requires navigating over the ACME data structure. We used the Demeter technology
from Northeastern University to facilitate this translation. We generalized this use of
Demeter to form a system called Persephone, for which a provisional patent
application has been filed.

1 Displaying ZD

In order to be able to display ZD structures, we explored the use of several existing
tools. For example, we can output ZD structures into LaTex that is suitable for the
IBM TechExplorer. We can also output ZD structures in a format suitable for an early
version of MediaDoc's diagram generator.

3.4 Accomplishments vs. Objectives

The accomplishments identified above contributed to realizing the project objectives, as
follows:

• Non-intrusive and cost-effective design rationale capture

The alternatives management capability in FAMILIAR provides a multi-layer
capability to track design rationale at arbitrary levels of abstraction. The e-mail
capture and batch input capabilities of FAM allow much of this information to be
recorded without additional effort on the part of designers.

• Enhanced automated support for software/system understanding

FAMILIAR can respond to queries about survivability, compatibility, and coverage at
many levels of abstraction, due to the reasoning capabilities of ZD.

• Enhanced ability to anticipate the impact of intended changes to a system

ZD provides a means for determining the impact of a new component. This capability
has been demonstrated through the survivability example described earlier.

• Support for increasing formalization

FAMILIAR supports incremental formalism. The alternatives management system
allows designers to begin describing systems informally, and to place the alternative
designs in relation to one another. As distinguishing features are identified, this can
be made incrementally more formal by describing features of the alternatives, and by
constraining the features with rules.

Similarly, decomposition information can be added as needed to the design
description. At this point, the structure can be translated into ACME, to allow the
designer to add information about the relationships between parts of the architecture.
Some of the FAM features are translated into formal information about the
architecture components. The designer may then elaborate any of these features, as
needed, to take advantage of the capabilities of ZD.

Throughout this lifecycle, from identification of alternatives to formal specification of
architectural properties, FAMILIAR provides incremental support. Any increase in
formalism results in increased feedback from the system. This stands in contrast to
many formal systems, in which no benefit is delivered until the entire system has
been expressed formally.

• Traceability of evolving design decisions

FAMILIAR provides a consistent way to represent detailed as well as high-level
design decisions. Because successive "snapshots" of a design may be recorded as
alternatives, FAMILIAR'S support for comparing and contrasting alternatives
provides insight into the evolution of the design.

• Decision support through disciplined evaluation of design alternatives

FAMILIAR provides a systematic way to specify the features of a design alternative,
so that it can be evaluated in a disciplined way. Feedback obtained at any level of
formalism can be recorded as additional information in the design description for
future consumption.

• Increased integration and feedback between lifecycle phases

We have applied the FR description language, enhanced with the FAM schema of
alternatives, features, and tradeoffs, to problems at various levels of abstraction, from
high-level architecture to algorithm design. This shows that the FAMILIAR concepts
can be used throughout the software evolution lifecycle, which we expect will
facilitate iteration between phases.

3.5 Accomplishments vs. Evaluation Criteria

In the FAMILIAR proposal, we identified potentially quantifiable goals of accuracy and
explanatory power. Although we learned a great deal from using FAMILIAR within our
own efforts (see Section 4), we did not have the resources to run a pilot development
project that would test these process characteristics.

4. APPROACH

The project was structured into three one-year phases, with a demonstration of
capabilities at the end of each phase. The first year's work was driven largely by lessons

learned from previous work on KAPTUR and ZD. Years two and three were driven by
feedback from the demonstrations and lessons learned during the preceding year's
development.

4.1 Year One: Con-ops and Initial Prototype

We began the project by developing a Concept of Operations (con-ops) for the
FAMILIAR system, and then evaluating alternative approaches to implementing it. One
of our earliest decisions was that the alternatives management part of FAMILIAR should
be developed anew rather than built on existing KAPTUR code. There were several
reasons for this decision. The most recent version of KAPTUR was a proprietary system
for which we did not have immediate source code access. While such access might have
been negotiated, we knew that the changes to be made to the system (based on lessons
learned) were substantial enough to put into question the value of a source code license.
Developing the code anew would allow us to write the alternatives manager in Java, with
all ofthat language's expected advantages for platform portability and web compatibility.

The initial prototype of the Formal Alternatives Manager (FAM) was specified in a
document that translated the lessons learned from KAPTUR into functional
recommendations for the new system. One of the most important recommendations was a
more rigorous treatment of features. While in KAPTUR features were simply
uninterpreted text phrases, in FAM the assignment of features to alternatives became
subject to certain semantic consistency checks. Following review of the specification, the
software was implemented in an ad hoc Java-based design. The class structure of this
initial prototype was an artifact of decisions made with the predominant goal of
demonstrating the tool at the first EDCS Demo Days. While not very maintainable, the
prototype showed the functionality that we wanted to demonstrate.

Concurrent with this activity, work began on a version of ZD tailored to functional
rationale capture. The starting point for this was a system called ZD 1, which had been
developed by Beat Liver at the Swiss Federal Institute of Technology and Swiss
Telecom. Liver's work was based on Dr. Allemang's 1990 dissertation at the Ohio State
University. ZD 1 provides capabilities for software configuration, diagnosis, and
survivability analysis. (It is described in Liver's dissertation, Thesis #1519, Ecole
Polytechnique Federale de Lausanne, 1996.)

Formal calculations in ZD 1 were based on a type calculus that was not fully automated.
Running the system relied on interactions with a human user who would provide answers
to simple type-inclusion queries. For example: "Is x a member of the set {x, y, z}?" or "Is
the set of integers from 0 to n a subset of the set of positive integers up to n-1". In the
initial phase of the FAMILIAR project we extended ZD1 to overcome such limitations.

We considered redeveloping ZD in Java to permit tight integration with the alternatives
manager. We rejected this approach because, as an inference system currently written in
Lisp, ZD was not particularly amenable to implementation in an imperative programming

10

language. Moreover, we expected that in due time there would be adequate tools for
integration between Lisp and Java-based systems, and it was not a good use of research
funds to try to achieve this on our own. It was necessary, however, to port ZD from a
custom Lisp dialect to Common Lisp, so that we could take advantage of off-the-shelf
integration tools such as CORBA and achieve a reasonable level of platform
independence.

Instead, makeshift integration mechanism using Unix pipes was put into place to
demonstrate the interaction of the alternatives manager and ZD. While not a maintainable
solution, and certainly not operating system independent, this form of integration allowed
us to demonstrate the FAMILIAR concept in action, obtain feedback, and plan for a more
principled design in the next phase.

4.2 Year Two: Design Rationalization and Usability Enhancements

Considerable effort was spent during the second year in developing a clean, maintainable
design for FAM, the alternatives management part of FAMILIAR. The FAM user
interface was still implemented using the Microline Component Toolkit (MCT) because
we did not believe that Sun's Swing technology was sufficiently mature. However, we
designed the new FAM so that MCT could be easily replaced by Swing when the time
was right. In addition to paving the way for this transition, this approach allowed us to
take advantage of the underlying Swing architecture, a form of the model-view-controller
paradigm into which Sun had put considerable thought.

During this re-design of FAM, we made changes to the user interface in response to
problems that beta-testers had voiced concerning the initial prototype. For example, the
assignment and un-assignment of features to design alternatives, which had previously
been achieved by special buttons, was changed to be done by copy/paste/cut/delete in the
Features of Design Alternative window. (This itself was a compromise since we really
wanted to use drag-and-drop, but it was not available in the MCT library nor in the
standard Java AWT classes.) Error reporting was made more consistent, with two levels
of information available (initial brief message and on-request detailed explanation).

Several major functional additions to FAM were implemented in this phase. Chief among
these was a form of non-intrusive rationale capture based on e-mail. We came to this idea
by analyzing our own patterns of design discussions, trying to explain our own resistance
to using the initial prototype of FAM. We found that, next to face-to-face dialogue, e-
mail was the team's de facto medium of choice for hammering out design decisions. We
therefore implemented a capability to capture e-mails that were cc'd to a FAM address.
The capture capability allows a FAM user, at her leisure, to map arbitrary portions of the
e-mail messages to the design alternatives (nodes in the FAM database) that they refer to.
Subsequent users then see these message snippets as annotations to the design
alternatives.

11

The e-mail capture capability assumes that the FAM database is already populated. Use
of the initial prototype showed that this too was a burden on software designers,
especially when schedules are tight and the team is focused on finding the right solution,
not on documenting its reasoning. The population process is especially burdensome when
there are a lot of alternatives and features. While the user interface of FAM supports fully
interactive tree editing to input this information, the process is not fast or easy enough to
permit rapid input of large amounts of information.

In response to this scale-up problem, we implemented a batch-input function whereby
FAM either creates or extends a database to include information contained in a tab-
formatted ascii file. Tabs are used to specify the tree structure. This enables designers to
use a highly efficient input mechanism, the text editor, to specify the alternatives and
features being discussed by the design team.

Some viewers of the initial demonstration suggested that more semantics were needed for
FAM features. For example, users wanted to be able to specify properties of feature
combinations (good, bad, allowed, not allowed, etc.). Some viewers suggested that FAM
could automatically generate design alternatives by blindly combining features, and then
prune the resulting alternatives space either automatically, through rules, or interactively
through user choice.

In response to these and other suggestions, we implemented an open-ended rule engine in
FAM. The engine provides a simple interface that allows users to create their own
constraint and transformation rules, which provide increased semantics to the FAM
alternatives and features. The FAM rule engine is a port of the Hendrix system, which
had been developed for AFRL under the Knowledge-Based Software Assistant (KBSA)
program. To work with FAM, the Hendrix rule-creation and execution functions were
ported from the CLIPS production system language to the Java Expert System Shell
(Jess), a Java-compatible CLIPS lookalike. It is important to recognize that the FAM rule
engine does not duplicate or replace any ZD functionality. It serves as an intermediate
vehicle for enriched, but not fully formal, semantics. This is consistent with our goal to
support the evolution from informal to formal semantics as a domain matures.

Concurrent with these enhancements to FAM, ZD was integrated with the architecture
language ACME, and the supporting ACMEStudio tool. ACMEStudio provided a
graphical interface for specifying component inter-connections within design alternatives
as well as for displaying the results of a ZD analysis. In addition, the import/export
between ZD and ACME provides a basis for future integration with other tools.

Finally, in preparation for the second EDCS Demo Days, we developed two realistic
scenarios of military system evolution. The scenarios show how FAMILIAR reduces
effort and improves the resulting decisions. The first scenario involves a surveillance and
data fusion situation in which correct interpretation of data requires the introduction of a
new processing capability. Since the host on which this capability resides is of a different
type from the rest of the system, connectivity must be established between the systems.
FAMILIAR uses functional representation to analyze a proposed solution, identify

12

disconnects, and suggest a fix. The second scenario illustrates the use of FAMILIAR in
the design of a distributed C3I system. FAMILIAR generates alternative architectures for
the system, given a range of available components. FAMILIAR then assists the designers
in pruning the space of alternatives through tradeoff analysis, using information captured
from ongoing e-mail discussions.

4.3 Year Three: Improved Con-Ops and Client-Server Architecture

The primary lesson that we obtained from feedback at the second EDCS Demo Days was
that FAMILIAR was too passive. It did not clearly enough support an explicit process
with well-defined payoffs. A typical reaction was something like, "It is very nice, but
what exactly do I do with all this information?" Even worse was the comment, "So you
put all this information in there, but what exactly does the tool itself do?"

In the final year of the project, we revisited the Concept of Operations and developed a
more explicitly process-based user interface. The new con-ops and interface are based on
the idea of knowledge recycling. In this approach, one solves a problem (such as a design
or planning task) by looking for existing artifacts that can serve as a part or all of the
solution, perhaps with some adaptation. Having solved the problem, one records it in the
database so that it is now available for similar searches in the future.

The new user interface contains a diagram illustrating this process. Another diagram
illustrates the sub-process of evaluating potential solutions by comparing and contrasting
them (the heart of the rationale capture process). These diagrams, as well as the user's
current position within the process, are visible to the user at all times. The user therefore
knows where he has been and where he should be going.

A related critique of the FAM user interface was the explosion of many windows with
inter-related information. In the first two versions of FAM (versions 0 and 1), each type
of information was displayed, upon user request, in its own window. For example, each
of the following types of information was displayed in its own window:

• Alternative designs for a given system type
• Features of a given system type
• Features of a particular alternative
• Components of a particular alternative
• Goals of a given system type
• Tradeoffs

Modification to the information in one window would automatically propagate to update
the related information in all other windows. Nevertheless, the screen quickly became
cluttered with numerous windows, and it became hard to keep track of what one was
looking at, and how it all fit together.

13

In FAM 2, the most recent version of the alternatives manager part of FAMILIAR, the
multiple windows are replaced with a single integrated display divided into frames with
sliding borders. Each type of information has a fixed frame position, so that the user
knows to look there for that type of information. Because the frames are not overlapping,
all related information is visible at all times. However, the user can slide the borders to
view more of a certain type of information and less of another.

The individual Features of Alternative Design displays were dispensed with. Instead, the
global Alternatives and Features frame are now linked so that when a single alternative is
selected, all features of that alternative are automatically highlighted. Conversely, when a
single feature is selected, all alternatives possessing that feature are automatically
highlighted. This linkage can be toggled on and off so that it does not interfere with the
process of updating the database.

Another problem that we tried to address in this phase was the intrinsic intrusiveness of
having to use a standalone tool, distinct from the tools already on the designer's desktop,
in order to capture design rationale. Our solution to this problem was to make
FAMILIAR a web application, accessible through a web browser at a URL that is
specified at install time. We learned early in the project that applets were not an effective
means of implementing complex functions, and that the trend in web applications was
towards server-side processing. We therefore re-designed FAM to support a client-server
architecture with a light-weight user interface. At the same time, we moved from the
MCT widgets to Swing in order to keep in step with the latest Java developments.

The conversion to a client-server architecture was only partially successful, for reasons
discussed below under Lessons Learned. We believe it remains the correct approach, but
we realize now that an effective implementation requires a more thorough design change
than originally thought.

5. LESSONS LEARNED

This section summarizes the main lessons that were learned during the course of the
FAMILIAR project. Some of these were learned early and were addressed, to a greater or
lesser extent, in the second and third years. Others point the way to future work.

5.1 Non-Intrusive Rationale Capture

The greatest obstacle to systematically capturing design rationale is the perception that it
interferes with the momentum of the design process itself. We have tried to address this
issue by separating the capture of raw data from the process of structuring and analyzing
it. For example, FAMILIAR captures e-mail messages and places them in an archive, but
allows the user to defer the process of annotating FAMILIAR data with portions of the
message. This is an example of the overall rhythm of alternating production and
reflection cycles that characterizes an effective software design process.

14

A more detailed analysis of the issues surrounding non-intrusive rationale capture was
presented in the Final Report of a related project, the Phase ISBIR project entitled
Capturing Design Rationale in a Multi-Media Design Narrative. There, we considered
the cognitive and motor barriers to articulating rationale in the heat of software
development, and we made several recommendations towards overcoming the barriers.
The recommendations are fully consistent with FAMILIAR, and carry the simple idea of
e-mail capture much farther. Although this has not been the main emphasis in the
FAMILIAR project, we now recognize that a well-developed non-intrusive capture
capability is a prerequisite for a tool like FAMILIAR to be widely used.

5.2 Integrated Display

Part of the value provided by FAMILIAR is its automated maintenance of inter-related
information, and its support in visualizing the web of design information. Our naive
assumption at the beginning of the project was that, in the absence of sophisticated
display mechanisms, we could use basic window-icon-menu-pointer (WIMP) techniques,
and the user would benefit simply from the presence of the information.

We discovered that this is not really the case. The multiplicity of windows creates a form
of information overload in which the user quickly loses track of what information is
being displayed, and where it can be found. We responded to this problem by changing to
a single-window, multiple-frame user interface. This is less general than the multiple
window approach because each type of information corresponds to a particular frame
position. For example, there is only one Alternative Designs frame, one Features frame,
and one Tradeoffs frame. (The user can get around this limitation by creating multiple
web-browser windows, but we have not considered this as part of the recommended
usage pattern.)

Although the new interface is less general, we believe this is an instance of the principle
that Less is More. Viewers of the FAMILIAR demonstration at the third EDCS Demo
Days responded favorably to the new interface. Those who had seen the multi-window
interface concurred that the integrated display was much more comprehensible. Some of
the limitations of the integrated display were overcome through interface dynamics (in
effect, using time instead of screen space as a dimension). For example, the individual
"Features of an Alternative Design" windows were replaced with automatic highlighting
of the features of a selected alternative, within the global Features frame.

The integrated display clarifies the value provided by FAM as an information server. The
Features and Tradeoffs frames, as well as the separate browser window in which URLs
for selected alternatives are displayed, are all dynamically updated to reflect the currently
selected alternatives. The user no longer has to request (through a button press) to see any
of this information. As different alternatives are selected and the entire display changes, a
picture of the data inter-relationships is conveyed with less prompting from the user than
in previous versions.

15

Our long-term goal is to find novel visualization techniques, possibly using 3-D and
animation, to provide even more highly integrated displays. This is an area for
experimentation, which would be an important part of any follow-on work.

5.3 Pro-Active Guidance to the User

With the earlier versions of FAMILIAR, there was some confusion on the part
demonstration viewers as to where the data in the tool came from, and how it was
supposed to be used. Part of the confusion was an artifact of the demonstration setting,
since we did not show the process of populating the tool with data. We did demonstrate
the mechanics of entering data into the tool, when asked. However, the essence of the
process is not data entry but rather the formulation of design alternatives through
discussion, research, and reasoning. An integrated demonstration with a tool like Orbit or
WinWin (two other EDCS projects) might have been an effective way to show this
process, but limitations of time and funding prevented it from happening.

Demonstration viewers were therefore presented with an already populated database, and
the demonstrations focused on the use of the recorded information. However, because the
information was already recorded, and therefore the "answers" that FAMILIAR provided
were already determined, the demonstrations lacked a convincing message of value
provided.

Our analysis of this problem convinced us that it went deeper than demonstration
mechanics. FAMILIAR, in its first two versions, resembled a spreadsheet tool. It was
predominantly a passive system, in which the user entered information and specified
links between certain information elements. The tool assisted the user by automatically
maintaining values as determined by these links and by computing other values (such as
tradeoffs). In addition, the ZD portion of the tool provided automated analysis of the
information entered. There was, however, no explicit indication of the recommended use
of the computed information (tradeoffs) or of the analysis results. A potential user who
was already attuned to the implied methodology would see the value of the tool, but one
who was not so attuned would not "get it."

This lesson was known to us from the days of KAPTUR. It did not find its way into the
initial con-ops for FAMILIAR, perhaps because with so many other operational changes,
we were not sure that the same problem would arise. When it became apparent that it did,
we were able to bring to bear a past analysis of the problem for KAPTUR and propose an
explicit process-directed user interface.

Under this interface, two levels of process diagrams serve as the vehicle for user
commands. Each node in the diagram corresponds to an activity supported by
FAMILIAR. The node acts as a button invoking the corresponding FAMILIAR function.
Arrows between nodes represent the recommended flow of activities. Since the process
diagrams are always displayed, they provide the user with a constant reminder of the

16

current activity, the activities that led up to the current one, and the recommended
activities to follow, culminating in a problem-solving goal. When the goal is reached, the
user has clearly accomplished something, and the role of the tool in helping to achieve it
is apparent.

5.3.1 Pros and Cons of a Process-Based Interface

While we believe that the process-directed user interface is a major step forward in
FAMILIAR'S usability, there is a potential drawback to it, which we encountered during
the third EDCS Demo Days. At least one viewer was concerned that any tool she acquire
be tailorable to her organization's established processes. The explicit process diagram in
the FAMILIAR display set off an alarm for this viewer. She asked us whether the process
represented in the diagram was built into the tool or whether it could be modified. She
expressed dissatisfaction with our answer that it was built into the tool.

To some extent, this was a problem of misunderstanding. The process represented in the
FAMILIAR user interface is a very general pattern of knowledge recycling and
systematic evaluation of alternatives in solving a problem. It is present, implicitly, in
virtually any effective engineering process. It is made explicit in the FAMILIAR user
interface because that is precisely the process that FAMILIAR aims to support. We do
not believe that the "hard wiring" of this process into the user interface in any way limits
the settings in which the tool can be used. However, its appearance may suggest this to
potential users. Further enrichment of the interface, with tool tips and help text, could
help mitigate this problem.

Another potential drawback of the explicit recommended process is that it may
discourage novel and unexpected uses of the tool. The discovery of such uses is a well-
known phenomenon in the evolution of successful tools, and we do not want to
discourage it with FAMILIAR. However, at this early stage of the tool's existence, the
problem of conveying the intended use must take precedence so that people will start to
use the tool in the first place.

5.4 Need for DBMS Functionality

FAMILIAR may be viewed as an intelligent scratchpad for trading off design
alternatives. While the principles of knowledge recycling apply to the work of a single
designer as well as to that of teams, the need for tool support increases when there are
multiple stakeholders with different goals, preferences, experience, and rationales.
FAMILIAR was always envisioned as a multi-user tool, in which alternatives were
proposed by different participants in the design process.

Multi-user access raises the issue of preventing concurrent conflicting updates to the
database. In Version 1 of FAM, a modest level of support was provided by means of lock
files. The locks ensured that any single device type (this is FR terminology for a type of

17

system, identifiable through its functional goals) could be modified by at most one user at
a time. Because a device consists of components that are instances of other device types,
the locks were required to extend to all devices in a device group. Device groups were an
artifact that we created to refer to a hierarchy of devices.

We were never happy with the notion of a device group, and it disappeared from the
user's view in Version 2. It was replaced with the idea of a single, corporate repository of
design information. Unfortunately, this makes the locking capability even more crude
than in Version 1. Locking the entire corporate memory for the duration of an entire user
session is not an acceptable solution to providing data integrity.

What is clearly needed is a finer-grained locking capability. More generally, FAMILIAR
would benefit from the kinds of multi-user, data integrity, and query support that an off-
the-shelf Database Management System (DBMS) provides. Adding a DBMS to
FAMILIAR should not be difficult, since the database currently consists simply of
serialized Java objects, and Java itself provides an interface to ODBC, which many
DBMSs support.

5.5 FAMILIAR as Corporate Memory

One of the challenges in describing FAMILIAR to potential users is to characterize the
tool in terms that are already meaningful to them. This depends largely on the type of
work the user does. FAMILIAR may alternatively be described as a decision support
tool, a rationale capture tool, a knowledge management tool, a case-based reasoning tool,
a domain modeling tool, a component repository, and an intelligent portal (see Section
5.6). FAMILIAR has some features of all of these, and yet it does not exactly fit the
stereotype of any of these categories.

A common denominator in all of the descriptions is the idea of a corporate memory with
pro-active support for problem solving. This is why we based the process-directed user
interface of Version 2 on the idea of knowledge recycling. Tradeoffs and rationale
capture play an essential but frequently unrecognized role in a corporate memory system.
The motivation for "remembering" things in the system is to make use of them in the
future. The purpose is to reconsider past decisions or to apply previous successes to new
situations. In either case, it is important to understand why things were done as they were,
and to evaluate potential alternatives. This relationship between corporate memory and
rationale is the core idea of FAMILIAR, and we discovered that it takes a non-trivial
effort to convey it to many potential users.

A related challenge is describing the intended and/or potential scope of FAMILIAR. As
an EDCS tool, it was developed to support software evolution, as a way of evaluating
alternative designs. Other kinds of software artifacts, besides designs, can also be
represented as alternatives in the FAMILIAR database.

18

We have also demonstrated the application of FAMILIAR to logistics planning. When
viewed as a decision-support or case-based reasoning tool, FAMILIAR can be seen to
provide value to a wide range of problem-solving tasks. Alternatives are then to be
viewed as alternative solutions to a given type of problem. To the extent that a problem
can be decomposed into sub-goals that are functionally composed, even the FR
component of FAMILIAR may be applicable.

This generality is, we have found, both a strength and a liability. It is a strength in that we
can make a case for the use of the tool in many situations. It is a liability because people
usually do not grasp generalities that they have not arrived at themselves. Selling
FAMILIAR as a general-purpose corporate memory tool is probably not an effective
communication strategy.

5.6 FAM as an Intelligent Portal

The recent emergence of portal technology for the web provides a handle for
communicating the core idea of FAMILIAR. Viewing the web as a gigantic corporate
memory (or as a vehicle for implementing an organizational memory) makes apparent the
need for tools that focus attention on relevant information. Version 2 of FAM provides an
explicit step in this direction by including a keyword-based search function. It can be
argued, however, that the ability to compare and contrast items found on the web is as
crucial as a search capability, since it provides a basis for filtering. Goal-oriented
comparison immediately leads to consideration of tradeoffs and rationales, which is the
heart of FAM.

In order to pitch FAMILIAR as an intelligent portal, we would have to populate it with a
critical mass of web-based information. The information would have to be of a type that
users expect to access via a portal. It is conceivable that in the future, a web-based market
of software components could serve as such an application. Even today, web-based
software archives contain enough alternatives to warrant FAMILIAR-type support in
choosing components. (The obstacle in that case is the absence of economic incentive to
implement the support.)

5.7Design Trace vs. Domain Model

Closely related to the view of FAMILIAR as a corporate memory tool is the question of
whether it supports system design or domain modeling. The underlying methodology
draws a parallel between these two activities, and places FAMILIAR exactly in the
middle. System design is a form of domain modeling, according to this methodology,
where the domain consists of the space of possible designs. Conversely, domain
modeling involves explicitly or implicitly envisioning alternative designs for a certain
type of system. The difference, in principle, is one of scope.

19

In reality, system design and domain modeling are done by different people, at different
times, funded by different sources, using different tools. The purpose of FAM is to bridge
this gap. As such, one can consider the message to be "Let's bring the domain modeling
back into system design." This is a call to place greater emphasis, time, and attention on
the reflection cycle during software development, to ask on a continual basis, "What have
we done here? How could we abstract it?"

The message can conversely be construed as "Let's bring the system design back into
domain modeling." This is a call to include considerations about system structure
(architecture and components) in the domain modeling process, which is sometimes
limited to descriptive features and can thereby become divorced from the harsh realities
of system development.

Positioning FAMILIAR mid-way between system design and domain modeling makes its
role ambiguous, at least in the current state of the world. As in describing the tool as a
form of corporate memory, the ambiguity is both an asset and a liability. It is an asset
because it focuses attention on some important methodological truths (summarized in the
messages above). It is a liability because, given the current way in which projects are
organized, users do not clearly see how, when, or why to use the tool. Specifically, are
they to use it during design to thrash out alternatives within a specific project, or during a
domain modeling activity in which the products of multiple projects are considered as
input? If the answer is "both," how are the project-specific traces of evolving alternative
designs supposed to find their way into a cross-project organizational memory?

These issues were addressed in detail in the Final Report of a related project, a Phase I
SBIR entitled Models for Interoperable Rationale, Inference, and Alternative Designs
(MIRIAD). That report identified ways to extend FAMILIAR to support the transition
from single-project to multiple-project mode and back.

5.8 Relationship with WinWin

Positioning FAMILIAR in relation to WinWin remained an issue throughout the project.
Both tools are billed as rationale capture systems supporting the systematic evaluation of
alternatives. In fact, the tools are quite different in terms of the functions they support. A
consensus developed over the life of EDCS that they complemented each other. For
example:

• FAMILIAR has a more semantically structured way of describing alternatives

• WinWin provides explicit support for multiple concurrent users

• FAMILIAR organizes information primarily in terms of product attributes

• WinWin organizes information around issues arising in a project

Where the consensus did not quite gel was in the optimal way to integrate the tools. Both
projects agreed upon a straw-man mapping between WinWin and FAMILIAR data types.

20

Although it was expected that with experimentation, the mapping would probably
change, the agreement was considered a good start. That the integration never occurred
was an unfortunate function of priorities within each project.

5.9 Need for Rules

One of the first steps taken to move FAM beyond KAPTUR was to implement rules
governing the assignment of features to alternatives. These rules constituted a
subsumption check to the effect that a more specific feature could not be assigned to a
more general alternative. In other words, the following pattern is not permitted to occur:

Alternative A -v. Has Feature F

Specializes to ^^\^^^^ Specializes to

* /^^ +
Alternative B ^Has Feature G

There are two degenerate cases of the check: A single feature cannot be explicitly
assigned to a parent alternative and to one of that alternative's descendants. A single
alternative cannot be assigned both an ancestor feature and one ofthat feature's
descendants. Together, these rules ensure that descending the Alternatives Tree
represents specialization. Equivalently, they ensure that the links in the Alternatives tree
represent an "is-a" relation.

The subsumption rules were hard-coded into the Java implementation of FAM. Later, we
implemented a similar set of checks for components of alternatives. There is an
analogous rule to ensure that lower-level features are at least as good or at least as bad
with respect to any goal as a higher-level (ancestor) feature.

All of these rules, especially the last, were called into question by at least some of the
viewers of our demonstrations. Some viewers suggested additional types of rules, such as
inferences about feature combinations, pruning of infeasible alternatives, and alternative
computations of tradeoffs. These considerations led us to conclude that an open-ended
means of specifying and implementing rules in FAM was needed. We accomplished this
in the rule engine, which is an adaptation of the Hendrix tool developed under the KBSA
program for AFRL.

5.10 Feature Combinations

At the demonstration during the first EDCS Demo Days, we received feedback from
viewers that the tool needed more support for reasoning about feature combinations.
Specifically, they wanted to be able to assign a "goal satisfaction" value not to an
individual feature but to a combination of features. The tradeoffs of an alternative would

21

then take account of these values, factoring in the various combinations of features that
an alternative possesses.

This request was communicated to us not as something desirable but as something
essential for a methodologically sound tool. The point was made that an individual
feature's contribution to (or detraction from) a particular goal is frequently meaningless.
It must be considered in the context of the other features with which it co-exists.

We did not implement this function by the end of the project. However, by implementing
the rule-engine we took a step towards supporting it. This was one of several potential
enhancements to the decision support methodology (see Section 5.10, Tradeoff
Calculations, for another). Since we expected others to arise, we thought it better to
implement an extensible mechanism for specifying the methodology than to implement
specific changes in the Java code.

The rule engine, implemented in Version 1.1 of FAM, does not achieve the requested
capability. With some simple modification, however, it could. We envision providing the
FAM user with the ability to assert facts about the database. A simple user interface for
this process would have to be provided. Once the facts are asserted, they can be used as
conditions that trigger the firing of rules.

For example, facts asserting the goal-satisfaction values of certain feature combinations
could be used in rules that compute tradeoffs. The FAM rule engine does not currently
provide a high-level user interface to specify such rules, which involve arithmetic
processing, but it could be extended to do so. (The current high-level user interface
supports the specification only of structural pattern detection and transformation rules.)

5.11 Tradeoff Calculations

FAM computes a goal-satisfaction value for each alternative by averaging over all of the
alternative's features. As observed in Section 5.9, this approach assumes that feature
interactions do not have an impact on the realization of a goal. Clearly, this is invalid as a
blanket assumption.

Another weakness of the current tradeoff algorithm is that, after a value has been
computed for each goal, the overall "goodness" of an alternative is computed by
averaging over all goals, factoring in each goal's priority. In real-world decision
situations, goals cannot accurately be given absolute priorities or weights. An alternative
approach, known as the Analytic Hierarchy Process (AHP), is based on the idea that the
evaluation of alternatives inevitably involves compromise. Therefore, a more realistic
way to express priorities is to describe the relative importance of one goal to another, in a
pair-wise fashion. Pair-wise ranking addresses the question, "If you must compromise on
one of these two goals, which would it be, and how severe would the compromise be?"
The AHP algorithm is a way of aggregating the pair-wise precedence relations in order to
produce a composite "goodness" value for a proposed solution.

22

Replacement of the current algorithm with AHP would not be difficult. In fact, the
weighted-average currently used was intended simply as a placeholder to illustrate the
use of the tool. We assumed that a more sensitive algorithm could be found in the
decision support literature and plugged in where the averaging algorithm is currently
used.

5.12 Need for a Lightweight User Interface

We found that FAM was too large to run realistically as an applet. Running it in a
browser required the Sun JDK plug-in, and even so it took a long time to load and,
sometimes, exceeded available memory. Running it as a Java application also involved a
significant wait while the classes loaded.

A rationale capture tool is already at a disadvantage with respect to user acceptance
because the process it encourages appears to interfere with the progress of software
development. An inordinately long load time for the tool is enough to ensure that it will
not be used. This experience led us to conclude that FAMILIAR required a lightweight
user interface that would load rapidly, preferably within a browser so that it did not
appear as a separate tool.

The idea of a lightweight user interface also seemed compatible with a client-server
architecture, which in turn would support integration with a DBMS than a better
monolithic architecture. As we discovered, a lightweight user interface was not as
immediate a consequence of a client-server architecture as we might have expected. This
issue is discussed in Section 5.13.

5.13 Java Fragility

Working in Java provided many benefits, such as the ability to implement window-based
interfaces rapidly using built-in language capabilities, and the ability to work with objects
while not worrying about garbage collection. We learned, as many developers did during
the same period, that applets do not really deliver on their promise. They take too long to
download, and they stress browser performance and memory allocations to the point of
exceptions or even crashing.

We developed Versions 0 and 1 of FAM to run as either an applet or an application.
Running as an application is undesirable from the point of view of integration with
existing desktop environments. Running as an applet proved impossible without using
Sun's JDK browser plug-in, and only barely feasible with the plug-in.

We found that this was still true with the intended "lightweight" user interface of FAM
Version 2. Because the user interface employed several Swing classes (such as JTree),
the total volume of the applet, in terms of number of bytes to be downloaded, was not at

23

all "light." Using the JDK plug-in helps alleviate this problem because a local copy of
Swing can be used, but this limits platform universality, the very benefit that running as
an applet was intended to provide in the first place.

Another architectural problem prevented the Version 2 user interface from being as
lightweight as we had expected. The problem results from using 1) Swing in the user
interface, and 2) Remote Method Invocation (RMI) to communicate with the server.
(Presumably, a similar problem would occur if RMI were replaced by CORB A calls).

The problem is as follows. The Swing architecture requires each user interface object
(such as a tree) to have a corresponding model object, which is the logical representation
of the information displayed in the widget. The goal of the client-server architecture is to
move all significant processing to the server. It therefore makes sense to have the model
objects reside in the server. This proved impossible to implement using RMI because of
incompatibility between the interfaces that Swing models have to implement, and the
interfaces that remote objects in RMI have to implement. In particular, exception
handling proved impossible to implement with this design.

As a next-best approach, we tried keeping the model objects on the client side, but
retaining the data objects (essentially, the individual data items that are linked together
into trees, lists, etc.) on the server side. This too proved to be infeasible because of the
frequency with which the model objects invoke methods of the data objects. The coupling
between models and data is too tight to split over a remote interface. We therefore had to
include widgets, models, and data in the client side, resulting in a user interface that was
only slightly smaller than in previous versions. At the same time, because the server is
now responsible for maintaining persistence and handling search requests, the data
classes have to be replicated on the server side. This is not a desirable architecture.

We reached the conclusion that a truly lightweight user interface, and a maintainable
client-server architecture, require dispensing with the applet entirely. This implies that all
displays would be achieved through HTML, which is itself not a happy prospect. It might
be possible to retain the existing tree processing logic by instantiating the model objects
on the server side. Display update events would then be translated into dynamically
generated HTML. Whether the HTML should be generated on the server side or through
browser scripts would be a design issue.

The broader conclusion to be drawn from these considerations is that Java/web
application technology is still in an immature state. While it is advancing rapidly, its use
raises questions of stability and reliability for users whose satisfaction is our primary
goal.

5.14 Impact of Using a Theorem Prover in ZD

Several technical advantages were gained by using a theorem prover to support the
formal layer of ZD. For example:

24

The theorem prover permits a more compact and explicit representation of the
information used in the Compatibility Constraint Satisfaction Problem (CCSP). This
helps to clarify the algorithm, much of which concerns the propagation of information up
and down the functional decomposition tree. When the underlying formalism is expressed
in a theorem prover, propagation information can be expressed concisely in terms of the
ordering of expressions in the theorem prover's language.

Much of the recursive Proviso Proving and Propagation (PPP) algorithm involves
keeping track of the relationships between variables in various contexts. The contexts are
defined by logical expressions in the language of the theorem prover. The algorithm was
simplified by NQTHM's support for re-writing expressions given in one context into
another context.

The 2-phase commit example was a particular challenge for the theorem prover. In this
example, the designer uses FR to express the ways in which a certain state can be
reached. The designer also specifies the conditions under which the state must be
achieved in order to meet the requirements of the system. ZD then determines whether,
taken together, all of the ways to achieve the state are sufficient to cover the desired
conditions. This form of query can be difficult for a general-purpose theorem prover. ZD
uses information from the functional representation to direct the theorem prover's search
so that it can return an answer.

5.15 Interoperability of Formal Languages

In the FAMILIAR proposal, we suggested allowing components at different levels to be
described in different logical languages. The motivation for this was that it would be
common for the designers of components to express a component's function using the
language most suited to that function.

In hindsight, this proposal seems ill advised. Many of the ZD algorithms, such as CCSP
and PPP, rely in subtle ways on the details of the theorem prover. The dependencies
include ways in which the algorithms manage information across levels. Rather than
disrupt these dependencies, we achieved a similar goal in a different way. Providing a
single but very expressive formalism such as that provided by NQTHM allows the
designer to specify constraints that describe the terms used at each level. The introduction
of domains allows whole sets of terms to be defined (and constrained) as a unit, thereby
allowing for consistent sets of terminology to be used at each level.

6. FUTURE DIRECTIONS

Several areas of future work were identified in Section 5 along with the lessons learned
that motivate them. In this section we summarize the most important of these for future
reference.

25

The highest priority is to get FAMILIAR into a state in which it can be reliably deployed
in real-world development situations. To do this, we must re-implement the client-server
architecture of FAM with a truly lightweight user interface. As discussed in Section 5,
this probably means foregoing the use of an applet entirely and relying instead on
dynamic HTML. This is a non-trivial development exercise, involving some interesting
architectural questions and potentially some issues about non-intrusive rationale capture.
Nevertheless, given the experience gained in this project, we believe that it will be a
relatively straightforward process.

Once the client-server architecture is stable, the next step towards equipping FAMILIAR
for scale-up will be to integrate a DBMS. The one issue of substance in this task will be
to streamline the FAM data model so that a user can easily "pan" in all directions over the
corporate memory.

Some explanation of this challenge is in order. In FAM 2, we consider all alternatives to
be arranged in a single global hierarchy that is available for search and browsing. A
keyword-driven search function directs the user to the sub-trees most likely to contain the
information he needs. However, we want to allow the user to move up, down, and across
these sub-trees to view related information.

The "panning" process is not well supported in FAM 2 because of the baggage that has to
be carried whenever new alternatives are placed in the user's view. This baggage includes
components of the alternatives, which the user may also want to view. Therein lies the
problem, because the components themselves may belong to very different locations in
the global hierarchy. Therefore, moving up or down the alternatives tree involves more
than just stepping across a single tree link. Efficiently handling this task will be the main
challenge in providing a scaleable database.

A related task will be to integrate a robust search capability. Certain aspects of the search
process are specific to FAMILIAR, such as the user of features to describe alternatives.
Nevertheless, it would be foolish for us to try to replicate the power of existing search
engines. We must find a way to use them in the context of FAMILIAR. (FAM 2 contains
a very simple search function, which is intended as a placeholder to illustrate the
process.)

A final task related to DBMS integration will be to provide fine-grained locking for
multiple concurrent users.

The tasks just described support scale-up to real-world development environments.
Another prerequisite to getting FAMILIAR used is to refine the non-intrusive knowledge
capture capabilities. The e-mail capture function that we implemented in this project
provides a good foundation. In order to make it truly attractive to developers, we must be
able test and refine it on an ongoing basis in a real development context. Although this
may be considered a form of productization, it will provide us with deeper understanding
of the usability issues involved in rationale capture.

26

A final task in support of true usability will be to support the transition between project-
specific system design and organization domain modeling. The ambiguity in the current
tool, discussed in Section 5.7, must be removed by providing explicit support for project
design traces. The tool should support the transfer of project information into a cross-
project corporate memory, and, conversely, importing information from the corporate
memory for use in a specific project.

Our vision will be realized when it is standard operating procedure for developers to
access the corporate memory and immerse themselves in multi-media presentations of
relevant best practice. They will use FAMILIAR to analyze the suitability of these
solutions to the current problem, and to adapt and compose them as appropriate. At each
step of the process, they will use FAMILIAR to capture both formal and informal
rationale, thereby weaving their experience into the ongoing design memory of the
organization and contributing to its collective competencies.

27

LIST OF ACRONYMS

3-D

AFRL

AHP

AWT

CCSP

CLIPS

CMU

ConOps

CORBA

DARPA

DBMS

EDCS
FAM
FAMILIAR

FR
HENDRK

HTML

JDK

JESS

KAPTUR

KBSA
MCT
MIRIAD

ODBC
ORB

PI
PPP
RC
RMI
URL

Y2K
ZD

Three Dimensional

Air Force Research Laboratory

Analytic Hierarchy Process

Abstract Window Toolkit

Compatibility Constraint Satisfaction Program

C Language Integrated Production System

Carnegie Mellon University

Concept of Operations

Common Object Request Broker Architecture

Defense Advanced Research Projects Agency

Database Management System

Evolutionary Design of Complex Software

Formal Alternatives Manager
Formal Alternatives Management Integrating Logical Inference
and Rationale
Functional Representation
Help Evaluating New Designs with Rules Interactively Extendible
Hypertext Markup Language

Java Development Kit

Java Expert System Shell
Knowledge Acquisition for Preservation of Tradeoffs and
Underlying Rationale
Knowledge-Based Software Assistant

Microline Component Toolkit
Models for Interoperable Rationale, Inference, and Alternative
Designs
Object Database Connectivity
Object Request Broker

Principal Investigator
Proviso Propagation and Proving
Rationale Capture
Remote Method Invocation
Universal Resource Locator
Year Two Thousand

Zweck Darstellung

28

DISTRIBUTION LIST

addresses number
of copies

HS. DE30RAH A. CERINO 20
AFRL/IFTD
525 8R00KS ROAD
ROME NY 13441-4505

KNOWLEDGE EVOLUTION*' INC.
1050 17TH STREET/- NW, SUITE 520
WASHINGTON DC 20036

AFRL/IFOIL
TECHNICAL LIBRARY
26 ELECTRONIC PKY
ROHE NY 13441-4514

ATTENTION: DTIC-OCC
DEFENSE TECHNICAL INFO CENTER
3725 JOHN J. KINSMAN ROAD, STE 0944
FT. BELVOIR, VA 22060-6213

DEFENSE ADVANCED RESEARCH
PROJECTS AGENCY
3701 NORTH FAIRFAX DRIVE
ARLINGTON VA 22203-1714

ATTN: NAN PFRIMHER
IIT RESEARCH INSTITUTE
201 MILL ST.
ROME, NY 13440

AFIT ACADEMIC LIBRARY
AFIT/LDR, 2950 P.STREET
AREA B, 3LDS 642
WRIGHT-PATTERSON AFB OH 45433-7765

AFRL/HESC-TDC
2693 6 STREET, BLDS 190
WRIGHT-PATTERSON AF3 OH 45433-7604

DL-1

ATTN: SMDC IM PL
US ARMY SPACE & MISSILE DSF CMD
P.O. 80X 1500
HUNTSVILLE AL 35807-3301

COMMANDER, CODE 4TL000D
TECHNICAL LIBRARY, NAWC-WD
1 ADMINISTRATION CIRCLE
CHINA LAKE CA 93555-6100

CDR/ US ARMY AVIATION & MISSILE CMD
REDSTONE SCIENTIFIC INFORMATION CTR
ATTN: AMSAM-RD-OB-R, (DOCUMENTS)
REDSTONE ARSENAL AL 35898-5000

REPORT LIBRARY
MS P3ö4
LOS ALAMOS NATIONAL LABORATORY
LOS ALAMOS NM 87545

ATTN: D"BORAH HART
AVIATION BRANCH SVC 122.10
F0B10A, RM 931
300 INDEPENDENCE AVE, SW
WASHINGTON DC 20591

AFIWC/WSY
102 HALL BLVD, STE 315
SAN ANTONIO TX 78243-7016

ATTN: KAROLA M. YOURISON
SOFTWARE ENGINEERING INSTITUTE
4500 FIFTH AVENUE
PITTSBURGH PA 15213

USAF/AIR FORCE RESEARCH LABORATORY
AFRL/VS0SA(LI8RARY-8LDS 1103)
5 WRIGHT DRIVE
HANSCOM AFB MA 01731-3004

ATTN: EILEEN LADUKE/D460
MITRE CORPORATION
202 BURLINGTON RD
BEDFORD MA 01730

DL-2

OUSD(P>/DTSA/DUTD
ATTN: PATRICK G. SULLIVAN, JR.
400 AR«Y NAVY DRIVE
SUITE 300
ARLINGTON VA 22202

AFRL/IFT
525 BROOKS ROAD
ROME, NY 13441-A505

AFRL/IFTM
525 BROOKS ROAD
ROME, NY 13441-4505

CENTRIC ENGINEERING SYSTEM, INC.
624 EAST EVELYN AVENUE
SUNNYVALE, CA 94086-6483

FLUENT INCORPORATED
500 DAVIS STREET, SUITE 600
EVANSTON, IL 60201

THE MACNEAL-SCHyENDLER CORPORATION
S15 COLORADO BOULEVARD
LOS ANGELES, CA 90041-1777

MOLECULAR SIMULATIONS, INC.
9865 SCRANTON ROAD
SAN DIEGO, CA 92121-3752

CENTRIC ENGINEERING SYSTEH, INC.
624 EAST EVELYN AVENUE
SUNNYVALE, CA 94086-6488

DL-3

